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Abstract

In this paper, we compare two computationally efficient approximation methods for the estimation
of growth rate distributions in size-structured population models. After summarizing the underlying the-
oretical framework, we present several numerical examples as validation of the theory. Furthermore,
we compare the results from a spline based approximation method and a delta function based approx-
imation method for the inverse problem involving the estimation of the distributions of growth rates
in size-structured mosquitofish populations. Convergence as well as sensitivity of the estimates with
respect to noise in the data are discussed for both approximation methods.
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1 Introduction and Theoretical Background

In this paper we consider approximation methods for a general class of estimation or inverse problems
wherein the quantity of interest is a probability distribution. In particular we assume that we have a
parameter (q ∈ Q) dependent system with model responsesx(q) describing in some manner a population
of interest. For data or observations, we are given a set of values{zl} for the expected values

E [xl(q)|P ] =
∫

Q

xl(q)dP (q)

with respect to an unknown probability distributionP describing the distribution of the parametersq over
the population under investigation. We wish to use this data to choose from a given familyP(Q) the
distributionP ∗ that gives a best fit of the underlying model to the data. Here we formulate an ordinary
least squares (OLS) version of the problem, but this is not essential to our results and one could equally
well use a weighted least squares, a maximum likelihood estimator, etc., approach. Thus we seek to
minimize

J(P ) =
∑

l

|E [xl(q)|P ]− zl|2

overP ∈ P(Q). Even for simple dynamics forxl, this is in general an infinite dimensional optimization
problem and approximations that lead to computationally tractable schemes are desirable. That is, it is
useful to formulate methods to yield finite dimensional setsPM (Q) over which to minimizeJ(P ). Of
course, we wish to choose these methods so that“PM (Q) → P(Q)” in some sense. In this case we shall
use the Prohorov metric [3, 15] of weak star convergence of measures to assure the desired approximation
results. A general theoretical framework is given in [3] with specific results on the approximations we
use here given in [2, 12]. Briefly, ideas for the underlying theory are as follows. One argues continuity
of P → J(P ) onP(Q) with the Prohorov metric (this is trivial in the cases considered here). IfQ is
compact (again, easily established in our case) then it is known thatP(Q) is a complete metric space and
is also compact when taken with the Prohorov metric. Moreover, if the approximation familiesPM (Q)
are chosen so that elementsPM ∈ PM (Q) can be found to approximate elementsP ∈ P(Q) in the
Prohorov metric, then well-posedness (existence, continuous dependence of estimates on data, etc.) can
be obtained.

The data{zl} available (which, in general, will involve longitudinal or time evolution data) deter-
mines the nature of the problem. The most classical problem (which we shall refer to as aType Iproblem)
is one in which individual longitudinal data is available for members in the population. In this case there
is a wide statistical literature (in the context of hierarchical modeling, mixing distributions, mixed or ran-
dom effects, mixture models, etc.) [14, 17, 18, 19, 20, 26, 27, 28, 29, 30, 33, 34] which provides theory
and methodology for estimating not only individual parameters but also population level parameters and
allows one to investigate both intra-individual and inter-individual variability in the population and data.
In what we shall refer to asType II problems one has onlyaggregateor population level longitudinal
data available. This is common in marine, insect, etc.,catch and releaseexperiments [11] where one
samples at different times from the same population but cannot be guaranteed of observing the same set
of individuals at each sample time. This type of data is also typical in experiments where the organism
or population member being studied is sacrificed in the process of making a single observation (e.g.,
certain physiologically based pharmacokinetic (PBPK) modeling [13, 21, 31] and whole organism trans-
port models [11]). In this case one may still have dynamic (i.e., time course) models for individuals, but
no individual data is available. Finally, the third class of problems which we shall refer to asType III
problems involves dynamics which depend explicitly on the probability distributionP itself. In this case
one only has dynamics (aggregate dynamics) for the expected value

x̄(t) =
∫

Q

x(t, q)dP (q)

of the state variable. No dynamics are available for individual trajectoriesx(t, q) for a givenq ∈ Q.
Such problems arise in viscoelasticity and electromagnetics as well as biology [3, 5, 6, 12, 23]. While the
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approximations we discuss in this paper are applicable to all three types of problems, we shall illustrate
the computational results in the context of size-structured marine populations where the inverse problems
are of Type II.

Finally, we note that in the problems considered here, one can not sample directly from the probabil-
ity distribution being estimated and this again is somewhat different from the usual case treated in some
of the statistical literature, e.g., see [35, 36] and the references cited therein.

2 The Growth Rate Distribution Model and Inverse Problem

We now turn our attention to a specific application of the general ideas discussed above. The motivating
application for this work is the estimation of growth rate distributions for size-structured mosquitofish
populations. Mosquitofish have been used in the place of pesticides as a way to control mosquito pop-
ulations in rice fields. Biologists desire to correctly predict the growth and decline of the mosquitofish
population in order to determine the optimal densities of mosquitofish to use in rice fields to control
mosquito populations. Thus, a mathematical model that accurately describes the mosquitofish popula-
tion would be beneficial in this application, as well as in other problems involving population dynamics
and age/size-structured data.

Based on data collected from rice fields, a reasonable mathematical model would have to predict
two key features that are exhibited in the data: dispersion and bifurcation (a unimodal density becomes
a bimodal density) of the population density over time [4, 9, 10]. The growth rate distribution model,
developed in [4] and [9], captures both of these features in its solutions. This model is a modification of
the Sinko-Streifer model (used for modeling age/size-structured populations) which takes into account
that individuals have different characteristics or behaviors. The standard Sinko-Streifer model (SS) for
size-structured mosquitofish populations is given by

∂v

∂t
+

∂

∂x
(gv) = −µv, x0 < x < x1, t > 0 (1a)

v(0, x) = Φ(x) (1b)

g(t, x0)v(t, x0) =
∫ x1

x0

K(t, ξ)v(t, ξ)∂ξ (1c)

g(t, x1) = 0. (1d)

In this model,v(t, x) represents the size (given in numbers per unit length) or population density, where
t represents time andx represents the length of the mosquitofish. The growth rate of the individual
mosquitofish is given byg(t, x), where

∂x

∂t
= g(t, x)

for each individual, so that all mosquitofish of a given size have the same growth rate in this model. We
also note thatµ(t, x) represents the mortality rate of the mosquitofish. The functionΦ(x) represents the
initial size density of the population, whileK represents the fecundity kernel. The boundary condition
atx = x0 is the recruitment, or birth, rate, while the boundary condition atx = x1 = xmax ensures the
maximum size of the mosquitofish isx1. The SS model cannot be used as is to model the mosquitofish
population because it does not predict dispersion or bifurcation of the population in time under biologi-
cally reasonable assumptions [4, 9]. However, by modifying the SS model so that the individual growth
rates of the mosquitofish vary across the population (instead of being the same for all individuals in the
population), one obtains a model, known as the growth rate distribution (GRD) model, which does in fact
exhibit both dispersal in time of the mosquitofish population and the development of a bimodal density
from a unimodal density (see [9, 10]).

In the growth rate distribution (GRD) model, the population densityu(t, x; P ), discussed in [4] and
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developed in [9], is actually given by

u(t, x; P ) =
∫

G

v(t, x; g)dP (g). (2)

HereG is a collection of admissible growth rates,P is a probability measure onG, andv(t, x; g) is
the solution of (1) with growth rateg. This model assumes that the population is actually made up of
collections of subpopulations, where individuals in the same subpopulation have the same growth rate.
Based on work in [9], solutions to this model exhibit both dispersion and bifurcation of the population
density in time. For our considerations in this paper, we assume that the admissible growth rates have
the form

g(x; b, γ) = b(γ − x)

for x0 ≤ x ≤ γ and zero otherwise, whereb is the intrinsic growth rate of the mosquitofish andγ = x1

is the maximum size. This choice is based on work in [4], where the idea of other properties related to
the growth rates varying among the mosquitofish is discussed. Under the assumption of varying intrinsic
growth rates and maximum sizes, we in fact assume thatb andγ are random variables taking values
in the compact setsB andΓ, respectively. A reasonable assumption is that both are bounded closed
intervals. Thus we take

G = {g(·; b, γ)|b ∈ B, γ ∈ Γ}
so thatG is also compact in, for example,C[x0, X] whereX = max(Γ). ThenP(G) is compact in the
Prohorov metric and we are in the framework outlined above. In the first set of examples, we chose a
growth rate parameterized by the intrinsic growth rateb with γ = 1 , leading to a one parameter family
of varying growth ratesg among the individuals in the population. We also assume here thatµ = 0 and
K = 0 in order to focus on only the distribution of growth rates; however, distributions could just as
well be placed onµ andK.

We next introduce two different approaches that can be used in the inverse problem for the estimation
of the distribution of growth rates of the mosquitofish. The first approach, which has been discussed and
used in [9] and [10], involves the use of delta functions. We assume that the probability distributions
PM placed on the growth rates are discrete corresponding to a collectionGM with the formGM =
{gk}M

k=1 wheregk(x) = bk(1 − x), for k = 1, . . . , M . Here the{bk} are a discretization ofB. For
each subpopulation with growth rategk, there is a corresponding probabilitypk that an individual is in
subpopulationk. The population densityu(t, x; P ) in (2) is then approximated by

u(t, x; {pk}) =
∑

k

v(t, x; gk)pk,

wherev(t, x; gk) is the subpopulation density from (1) with growth rategk. We denote this delta function
approximation method as DEL(M), where M is the number of elements used in this approximation.

While it has been shown that DEL(M) provides a reasonable approximation to (2), a better approach
might involve techniques that will provide a smoother approximation of (2) in the case of continuous
probability distributions on the growth rates. Thus, as a second approach, we chose to use an approxima-
tion scheme based on piecewise linear splines. Here we have assumed thatP is a continuous probability
distribution on the growth rates. We approximateP ′ using piecewise linear splines, which leads to the
following approximation foru(t, x; P ) in (2):

u(t, x; {ak}) =
∑

k

ak

∫

B

v(t, x; g)lk(b)db,

whereg(x; b) = b(1− x), pk(b) = aklk(b) is the probability density for an individual in subpopulation
k and lk represents the piecewise linear spline functions. This spline based approximation method is
denoted by SPL(M,N), where M is the number of basis elements used to approximate the growth rate
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probability distribution and N is the number of quadrature nodes used to approximate the integral in the
formula above. We used the composite trapezoidal rule for the approximation of these integrals [32].

We were then able to use the approximation methods DEL(M) and SPL(M,N) in the inverse problem
for the estimation of the growth rate distributions. The least squares inverse problem that we wish to
solve is

min
P∈PM (G)

J(P ) =
∑

i,j

|u(ti, xj ; P )− û(ti, xj)|2 (3)

=
∑

i,j

(u(ti, xj ; P ))2 − 2u(ti, xj ;P )û(ti, xj) + (û(ti, xj))2,

whereû(t, x) is the data andPM (G) is the finite dimensional approximation toP(G). When using
DEL(M), the finite dimensional approximationPM (G) to the probability measure spaceP(G) is given
by

PM (G) =

{
P ∈ P(G)|P ′ =

∑

k

pkδgk
,

∑

k

pk = 1

}
,

whereδgk
is the delta function with an atom atgk. However, when using SPL(M), the finite dimensional

approximationPM (G) is given by

PM (G) =

{
P ∈ P(G)|P ′ =

∑

k

aklk(b),
∑

k

ak

∫

B

lk(b)db = 1

}
.

Furthermore, we are able to note that this least squares inverse problem (3) becomes a quadratic
programming problem [9, 10]. Lettingp be the vector that containspk, 1 ≤ k ≤ M, when using
DEL(M) or ak, 1 ≤ k ≤ M, when using SPL(M,N), we letA be the matrix with entries given by

Akm =
∑

i,j

v(ti, xj ; gk)v(ti, xj ; gm),

b the vector with entries given by

bk = −
∑

i,j

û(ti, xj)v(ti, xj ; gk),

and
c =

∑

i,j

(û(ti, xj))2,

where1 ≤ k,m ≤ M. In the place of (3), we now minimize

F (p) ≡ pT Ap + 2pT b + c (4)

overPM (G). We note when using DEL(M) we also had to include the constraint
∑

k

pk = 1,

while when using SPL(M.N) we had to include the constraint

∑

k

ak

∫

B

lk(b)db = 1.

However, in both cases, we were able to include these constraints in the programming of these two
inverse problems.
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3 Numerical Results

We next present and discuss several computational examples based on simulated data and performed
in MATLAB involving the estimation of the probability distributionP on the growth rates of the size-
structured mosquitofish population in order to demonstrate the validity of the theoretical results discussed
earlier. The particular examples used here are based on previous formulations discussed in [4] and [9].

3.1 Convergence of DEL(M) and SPL(M,N) Estimated Probability Distributions

In order to estimate the probability distributionP ∗ on the growth rates of the size-structured mosquitofish
population, we first began by preparing simulated population density data independent of the two approx-
imation methods DEL(M) and SPL(M,N) used in the inverse problem. Since we were only concerned
at this point with the estimation ofP ∗, we let µ = 0 andK = 0 in the Sinko-Streifer model. We
then chose a true distributionP ∗ on the growth ratesg(x), whereg(x) = b(1 − x) andb is the intrin-
sic growth rate of the mosquitofish. More specifically, we assumed that the intrinsic growth rateb of
the mosquitofish is a random variable with distributionP ∗. This allowed us to generate a collection of
growth ratesGn = {g1, g2, . . . , gn}, where we tookn = 200 in order to get a good approximation of

u(t, x;P ∗) =
∫

G

v(t, x; g)dP ∗(g)

andGn ⊂ G. Our simulated dataud(t, x;P ∗) was then created by first computing the solutionv(t, x; gi)
of the Sinko-Streifer model for each individualgi using the method of characteristics and then computing

ud(t, x;P ∗) =
∫

Gn

v(t, x; g)dP ∗(g)

using the Gauss-Legendre integration method( [32]). We took 50 uniformly spaced time observations,
where the time interval was[0, 0.5]. The range of size values(x0, x1) was normalized to(0, 1) and 50
uniformly spaced size values were used in this range for our simulated data. For the initial size density,
we used

Φ(x) =
{

sin2(10πx), 0 ≤ x ≤ 0.1,
0, 0.1 < x ≤ 1.

For our first set of data, we placed a “truncated” Gaussian distribution onb with mean̄b = 4.5 and
varianceσ2 = 0.25, whereb ∈ [b̄ − 3σ, b̄ + 3σ]. Using this range of values for the intrinsic growth
rates allows us to capture approximately 99% of the intrinsic growth rates. However, to ensure that this
“truncated” Gaussian distribution was indeed a true distribution, we had to scale the weights used in the
Gauss-Legendre integration method to ensure that

∫ b̄+3σ

b̄−3σ

f(b; b̄, σ)db = 1, (5)

wheref(b; b̄, σ) is the probability density function corresponding to the probability distributionP. Using
the set of data generated with this “truncated” Gaussian distribution, we then performed the inverse
problem using SPL(M,N) and DEL(M) to find estimates of the “true” probability density and distribution
(under the assumption that the true probability distribution P was unknown) and then compared these
estimates to the known density and distribution. As discussed earlier, this inverse problem is simplified
to a quadratic programming problem when using least squares, where we minimizepT Ap + 2pT b + c.

Overall, we found that both SPL(M,N) and DEL(M) produced good approximations of the true
Gaussian growth rate distribution using the simulated data; however, we also found that in some cases
SPL(M,N) produced bad estimates of the probability distribution when M and N were not chosen cor-
rectly. In Figure 1, we have the results from the inverse problem using SPL(15,200), DEL(15), and
DEL(45). We see from the results in Figure 1 that the spline based approximation method converges in
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Figure 1: Estimates of probability densities and distributions for true gaussian distribution using
a)SPL(15,200), b)DEL(15), c)DEL(45)

distribution much faster than the delta function approximation method for a given M, which we expect
since the true distribution was smooth and continuous. For M= 15 and N= 200, the estimates of the
probability distribution from SPL(M,N) have converged completely to the true distribution whereas the
estimates of the probability distribution from DEL(M) have not quite converged. As M is increased,
the estimated probability distributions from DEL(M) become better as seen in the results for M= 45.
We also note that along with convergence in distribution, SPL(M,N) also provides convergence in den-
sity, whereas DEL(M) does not provide convergence in density. This may be attributed largely to the
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difference in the constraints for these two methods. SPL(M,N) requires

∑

k

ak

∫

B

lk(b)db = 1,

wherepk(b) = aklk(b) is the probability density for an individual in subpopulationk andlk(b) represents
the piecewise linear spline “functions.” On the other hand, DEL(M) requires

∑

k

pk = 1,

wherepk denotes the probability coefficients andδqk
represents the delta functions. Since the true

density was in fact smooth and continuous, one would not expect convergence in density when using
DEL(M) because it is much cruder in its approximation of (5). We remark that this agrees fully with
the underlying theory for convergence of distributions in the Prohorov metric wherein convergence of
densities is not guaranteed.

We also used a second set of data in the inverse problem with a “truncated” Bi-Gaussian distrib-
ution on the intrinsic growth ratesb. Based on previous work in [4], this type of distribution leads to
data which exhibits both dispersion and bifurcation, which are two traits observed in actual mosquitofish
field data [4, 9, 10]. In order to obtain a Bi-Gaussian distribution, we took the average of two Gaussian
distributions, one with mean̄b1 = 3.3 and varianceσ2

1 = 0.492 and the second with mean̄b2 = 5.7 and
varianceσ2

2 = 0.492. The simulated data was prepared in the same way as described above except with
b ∈ [b̄1 − 3σ1, b̄2 + 3σ2]. The results for the inverse problem using this set of data are shown in Figure
2 for SPL(25,200), DEL(25), and DEL(85). Both methods do a good job of estimating the Bi-Gaussian
probability distribution with the simulated data. Again, we see that SPL(M,N) converges to the true dis-
tribution faster than DEL(M). However, it should be noted that more basis elements (larger values of M)
were required in both methods to achieve the same level of accuracy in approximating the Bi-Gaussian
probability distribution in comparison to the Gaussian distribution. As mentioned earlier, the spline
based approximation method results in both convergence in density and distribution for this example
as well, while the delta function approximation method only results in convergence in distribution. We
see that significantly more basis elements are required for full convergence of the approximations from
DEL(M) to the true Bi-Gaussian probability distribution .

In the examples given above, SPL(M,N) produced good approximations to both the Gaussian and
Bi-Gaussian densities and distributions. However, as we stated, obtaining good approximations when
using SPL(M,N) was very much dependent on choosing M and N appropriately. In fact, we found
if M and N were not chosen carefully, the estimates of the probability distributions from the inverse
problem using SPL(M,N) were not very good as a result of the problem becoming unstable. However,
by studying the condition number of the matrix A from the quadratic programming problem, we found
that this behavior could be readily explained. There are several different ways in which the condition
numberκ(A) of a matrix A can be described [32]. In terms of the norm‖ · ‖ of a matrix, we have
κ(A) = ‖A−1‖ · ‖A‖. The condition number of a matrix A can also be defined as the ratio of the largest
singular value to the smallest singular value in the singular value decomposition of the matrix A (see
[32] for further discussion). What is of most importance is the information one learns from studying
the condition number of a matrix. The matrix A is well-conditioned (well-behaved) ifκ(A) is relatively
small. On the other hand, A is ill-conditioned (ill-behaved) ifκ(A) is relatively large. Thus, ifκ(A)
is very large, meaning A is ill-conditioned, the inverse problem becomes unstable, which leads to poor
approximations of the probability distribution P. We note that the discussion here is limited to SPL(M,N)
based on the fact that the matrix A for the spline based method can become ill-conditioned for a given M
based on the number of quadrature nodes used in the composite trapezoidal method used for integration
purposes as discussed earlier. However, the matrix A in DEL(M) does not change for a given M due to
the way in which the population density and A is obtained as discussed in the previous section. Since we
must use a quadrature method to compute A for SPL(M,N), we expect the number of quadrature nodes
N used to have a role in determiningκ(A). In fact, if N is chosen too small for a given M, meaning
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Figure 2: Estimates of probability densities and distributions for true bi-gaussian distribution using
a)SPL(25,200), b)DEL(25), c)DEL(85)

the quadrature rule gives a very coarse approximation to the actual integration, then we expectκ(A)
to become larger, the problem to become unstable, and the estimates of the probability distribution to
become poor.

To explore the validity of this argument, we computed the condition number of A for M= 5, 25, 55, 75,
and95 and N= 50, 100, 150, 200, 250, and300 in both the Gaussian and Bi-Gaussian examples that
were used above. The resulting condition numbers of A for the Gaussian example are given in Table 1.
As we can see from the values in the table, when M= 5 and25, κ(A) is relatively small for all listed
values of N. We found that the inverse problem produced good estimates of the Gaussian probability
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M N ≈ κ(A)
5 50,100,150,200,250,300 9.35
25 50,100,150,200,250,300 87
55 50 1017

55 100,150,200,250,300 104

75 50 1019

75 100,150,200,250,300 105

95 50 1018

95 100,150,200,250,300 106

Table 1: Computed condition numbers of A for gaussian example when using SPL(M,N)

distribution when using SPL(5,N) and SPL(25,N). On the other hand, at M= 55, we began to see some
significant differences inκ(A), as shown by the values in Table 1. It can be noted that for M= 55, 75,
and95, κ(A) was very large when using SPL(M,50). However, there was a significant decrease in the
condition number of A when using SPL(M,N) for N= 100, 150, 200, 250, 300 for these values of M.
This difference in condition numbers was also evident in the estimates of the probability distribution
from the inverse problem. For M= 55, 75, and95, the estimates when using SPL(M, 50) were worse
than those obtained when using SPL(M,N) for all other listed values of N. We note the estimates of the
Gaussian probability distribution became better as the value of N was increased for these fixed values of
M.

M N ≈ κ(A)
5 50,100,150,200,250,300 13.23
25 50,100,150,200,250,300 71
55 50 1016

55 100,150,200,250,300 330
75 50 1017

75 100,150,200,250,300 103

95 50 1019

95 100,150,200,250,300 103

Table 2: Computed condition numbers of A for bi-gaussian example when using SPL(M,N)

For the Bi-Gaussian example, we also computedκ(A) for the same values of M and N, and the results
in this case are given in Table 2. The results obtained when using a “true” Bi-Gaussian probability distri-
bution were very similar to the results obtained when using a “true” Gaussian probability distribution. At
M = 5 and at M= 25, κ(A) was relatively small (13.23 and 71, respectively, for each value of N). The
inverse problem for these values of M was also stable, and the estimates of the probability distribution in
both cases were good. However, when M= 55, 75, and95, SPL(M,50) results in large condition num-
bers for A. The estimates for the probability distribution using SPL(M,50) were very poor in comparison
to the estimates obtained from SPL(M,N) for M= 55, 75, 95 and N= 100, 150, 200, 250, 300. When
SPL(M,N) was used in the inverse problem for the estimation of the Bi-Gaussian probability distribution
for M = 55, 75, 95 and for values of N greater than 50, we saw a decrease in the condition numbers of
A (see values in Table 2) corresponding to better approximations of the probability distribution.

To summarize these computational results, in both the Gaussian and Bi-Gaussian case, when N> M,
κ(A) was relatively low, which resulted in good estimates of the growth rate probability distributions
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when using SPL(M,N). However, when using SPL(M,N), for M∼ N, the condition number of A was
very large, resulting in an ill-posed inverse problem and poor estimates of the probability distributions.
For a fixed M, we observed that as the value of N increased, the condition number of A decreased, which
agrees with results in [7] and [8]. Therefore, we have shown by these computational efforts that we can
“regularize” the inverse problem when using SPL(M,N) by choosing proper ratios of M and N, which
is known as “regularization by discretization balance.” By using a finer discretization in the quadrature
method used in SPL(M,N), we were able to obtain better results in the inverse problem involving the
estimation of growth rate distributions.

3.2 Sensitivity of DEL(M) and SPL(M,N) Estimated Probability Distributions

In the previous subsection, we discussed the results from two examples using simulated data in the
estimation of probability distributions P on the growth rates of size-structured mosquitofish populations.
However, data collected from an experiment is usually corrupted by noise, which can be a result of errors
in collecting the data, errors in the instruments and techniques used, etc. Along with verifying that both
SPL(M,N) and DEL(M) produce estimates which converge in distribution when simulated data with no
noise is used in the inverse problem, we also wanted to be able to make some remarks about the sensitivity
with respect to noisy data of the estimates of the probability distributions from the two approximation
methods. Thus, we added random absolute noise to the simulated data used in the previous two examples
in the following way:

û(t, x; P ∗) = u(t, x;P ∗) + η · ε,
whereη represents the noise level constant andε represents normally distributed random values with
mean 0 and variance 1. We then performed the inverse problem again usingη = 0.005, 0.025, 0.05
corresponding to1%, 5% and10% absolute error, respectively, for both the Gaussian and Bi-Gaussian
cases.

We begin by discussing the results of the inverse problem using the simulated data with a true
“truncated” Gaussian distribution with the various noise level constants. Both approximation meth-
ods, SPL(M,N) and DEL(M), performed decently in the inverse problem with the varying percentages
of absolute error. With only1% absolute error, both DEL(M) and SPL(M,N), with M and N chosen
appropriately, resulted in estimates that converged to the true growth rate probability distribution in very
much the same manner as discussed above in the Gaussian example with no noise. The performance of
these approximations methods was not greatly effected by the small amount of noise in the data. With a
slightly larger percentage of absolute error in the simulated data, SPL(M,N) and DEL(M) were still able
to produce good estimates of the probability distribution. However, the results from the inverse prob-
lem usingη = 0.025 began to exhibit some small effects in the estimates obtained from both DEL(M)
and SPL(M,N). For example, in Figure 3, the approximated probability distributions for DEL(25) and
SPL(25,200) with5% absolute error reveal slightly overestimated front tails. Moreover, SPL(25,200)
with 5% absolute error resulted in small perturbations in the approximated density, which was very
smooth when no noise was present in the data. With very noisy data,η = 0.05, SPL(M,N) and DEL(M)
still perform fairly well. From the results for DEL(25) and SPL(25,200), shown in Figure 3, the noisier
data resulted in only slightly poorer approximations in comparison to those obtained with5% absolute
noise. Moreover, the larger amount of noise produced more oscillatory behavior in the approximated
probability densities for both DEL(M) and SPL(M,N), which would result in poorer approximations of
the corresponding probability distributions.

We also tested the two approximation methods for sensitivity to error in the Bi-Gaussian data with
the same percentages of absolute error. The results obtained from the inverse problem using DEL(M)
and SPL(M,N) with noisy data with a “true” Bi-Gaussian distribution were very similar to those obtained
when using noisy data with a “true” Gaussian distribution. Overall, the estimated probability distribu-
tions from DEL(M) and SPL(M,N) were not largely affected by the various amounts of noise added to the
simulated data. Both methods were able to produce good approximations of the probability distributions
in the presence of noise. With1% absolute error in the data, the estimates of the growth rate distributions
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from DEL(M) and SPL(M,N) did not change significantly from the estimates obtained when there was no
noise in the data. We were still able to obtain convergence in distribution (with faster convergence when
using SPL(M,N)) with both approximation methods. When the percentage of absolute error in the data
was5%, DEL(M) and SPL(M,N) still performed well by producing good estimates of the Bi-Gaussian
probability distribution. The small amount of noise had some small effect on the estimates as seen in
Figure 4; in fact, we see that the front tails in both the estimate from DEL(35) and SPL(35,200) for
η = 0.025 are slightly largely than the tails for the “true” distribution. When even more noise is present
in the data, the estimated probability distributions became slightly poorer for a fixed M and N. In Fig-
ure 4, the estimated probability densities and distributions are shown for DEL(35) and SPL(35) for data
with 10% absolute error. It is clear from these plots that the estimates from DEL(M) and SPL(M,N) are
indeed affected by the noisier data. As in the Gaussian case, we noticed some oscillatory behavior in the
estimated probability densities from these two approximation methods as the amount of noise present in
the data increased. Moreover, the front tails in the estimated probability distributions are overestimated,
whereas the end tails are underestimated for both DEL(35) and SPL(35,200).

While we were still able to obtain convergence in distribution using both DEL(M) and SPL(M,N),
with M and N chosen carefully, our computational results showed that as more noise was added to both
the Gaussian and Bi-Gaussian data, the estimates of the growth rate distributions from both methods
became relatively poorer for a fixed M and N. SPL(M,N) produced probability distribution estimates
that converged faster in distribution than DEL(M) using both data with noise and without noise. This
behavior, as stated earlier, was expected since the “true” probability distributions in these numerical
examples are smooth and continuous. Although some of our computational evidence for SPL(M,N)
also exhibited convergence in density as well as distribution, convergence in density is generally not
guaranteed and is not supported by the theory underlying this work [1, 2, 3, 12].
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Figure 3: Estimates of probability densities and distributions for true gaussian distribution using a)DEL(25)
with 5% absolute error, b)DEL(25) with 10% absolute error, c)SPL(25,200) with 5% absolute error,
d)SPL(25,200) with 10% absolute error
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Figure 4: Estimates of probability densities and distributions for true bi-gaussian distribution using
a)DEL(35) with5% absolute error, b)DEL(35) with 10% absolute error, c)SPL(35,200) with 5% absolute
error, d)SPL(35,200) with 10% absolute error
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3.3 Sensitivity Analysis of Approximation Methods with Respect to Noisy Data

We next considered the sensitivity of the two approximation methods, DEL(M) and SPL(M,N), with
respect to noisy data in order to make some comments about the uncertainty associated with the estimated
growth rate distributions. We cannot physically observe the entire population; however, we can include
some measures (e.g., confidence intervals) on the uncertainty of the estimates obtained from the two
approximation methods when using only a sample from the population. We follow the standard statistical
framework for asymptotic (as sample sizen →∞) distributions for OLS estimators [19, 22, 25].

We began by considering the following statistical model for the mosquitofish population density

Y (x̄j) = f(x̄j , θ0) + εj , j = 1, . . . , n,

where{x̄j} corresponds to(tl, xm), l = 1, . . . , nt,m = 1, . . . , nx pairs (nt corresponds to the number
of time values,nx corresponds to the number of size values used, andn = nt · nx). We also note that

E[Yj ] = f(x̄j , θ0) and var[Yj ] = σ2
0 ,

whereθ0 ≈ θ = {pk}M
k=1 when using DEL(M) andθ0 ≈ θ = {ak}M

k=1 when using SPL(M,N) and
εj ∼ N (0, σ2

0). Here,θ0 represents the “true” parameter value andσ2
0 represents the “true” variance

for the system (which are generally not known) and theθ are the parameters to be estimated forθ0.
Furthermore, we note that

f(x̄j , θ0) ≈
M∑

k=1

pkv(x̄j ; gk), (6)

wheregk(x) = bk(γ − x), when considering DEL(M), while

f(x̄j , θ0) ≈
M∑

k=1

ak

∫

B

v(x̄j ; g)lk(b)db (7)

when considering SPL(M,N).
As stated previously, our goal is to quantify the uncertainty associated with the estimated growth rate

distributions from the methods DEL(M) and SPL(M,N). We will make statements about the reliability of
our estimates based upon standard errors. That is, we will compute confidence intervals corresponding
to the estimated growth rate distributions. We note asn →∞,

θ̂OLS(Y ) ∼ NM (θ0, σ
2
0 [X T (θ0)X (θ0)]−1) = NM (θ0, Σ0),

whereX (θ) = ∂F
∂θ (θ) = Fθ(θ) is then×M sensitivity matrix with elements

Xjk(θ) =
∂f(x̄j , θ)

∂θk
.

We used the ordinary least squares estimator:

minimize inθ

n∑

j=1

(Yj − f(x̄j , θ))2.

The estimateŝθ for the growth rate distribution minimize

n∑

j=1

(yj − f(x̄j , θ))2
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for a particular realization or data set{yj}, and result from a quadratic programming problem as dis-
cussed earlier. As we have remarked, that along withθ0 being unknown,σ0 is also usually unknown.
Thus, in order to compute the standard errors associated withθ̂, we must also estimateσ0. We use the
following estimate forσ0 :

σ2
0 ≈ σ̂2 =

1
n−M

n∑

j=1

(
yj − f(x̄j , θ̂)

)2

.

We then use these estimates to compute an estimate of the covariance matrixΣ0 :

Σ0 ≈ Σ = σ̂2
[
X T (θ̂)X (θ̂)

]−1

.

Moreover, we note that the standard errors for the growth rate distributions estimatesθ̂k are given by

SE(θ̂k) =
√

Σkk.

Before we present some results, we want to make a few comments about the covariance matrixΣ.
We note that determininĝσ2 is very straightforward once we havêθ. We simply multiply the residual at
θ̂ by 1

n−M in order to computêσ2. We must also computeX (θ̂), which can be more difficult in general
when dealing with nonlinear systems. However, as we noted earlier, the elements of then ×M matrix
X (θ) are given by

Xjk(θ) =
∂f(x̄j , θ)

∂θk
.

These are actually the sensitivity elements associated with this system. We note for DEL(M) the entries
in the sensitivity matrixX (θ) are given by

Xjk(θ) =
∂f(x̄j , θ)

∂θk
= v(x̄j , gk),

whereθk(pk or ak) is the probability parameter associated with growth rategk(x) = bk(γ − x). For
SPL(M,N), the entries in the sensitivity matrixX (θ) are given by

Xjk(θ) =
∂f(x̄j , θ)

∂θk
=

∫

B

v(x̄j , g)lk(b)db.

Since both (6) and (7) are linear inθ, then computingX in this case is also very straightforward. Fur-
thermore, the asymptotic distributional results given earlier are exact in this case (see [19, 22, 25]) as
opposed to only being an approximation whenf(x̄j , θ) is nonlinear inθ.

We present next some findings on the sensitivity of DEL(M) and SPL(M,N) using simulated data
generated with a “true” Bi-Gaussian distribution. Table 3 displays the estimated probability density
values and corresponding confidence intervals for DEL(9) and SPL(9,200) in the presence of5% and
10% absolute error. In Figure 5, we see the confidence intervals corresponding to the estimated growth
rate distributions withα = 0.05 for DEL(9) and SPL(9,200) with simulated data with both5% and10%
absolute error. The endpoints of the confidence intervals are given by

θ̂ ± t1−α/2SE(θ̂),

wheret1−α/2 is a distribution value that is determined by the level of significance that is chosen [24].
After a level of significance is chosen, we determine the correspondingt1−α/2 value from a statistical
table for the t-distribution. We chose to useα = 0.05 for a significance level of95%, which corresponds
to t1−α/2 = 1.96 when the number of degrees of freedom is large, i.e.,n ≥ 30. Based on the confidence
intervals, we can make statements about the estimation procedure constructed from a realization ofY.
If the resulting confidence intervals are relatively large in relation toθ̂, then we are not very confident
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DEL(9) - 5% DEL(9) - 10% SPL(9,200) -5% SPL(9,200) -10%
p1 0.1724± 0.0191 0.1750± 0.0196 0.0203± 0.0130 0.0460± 0.0252
p2 0.1506± 0.0170 0.1487± 0.0174 0.0459± 0.0075 0.0452± 0.0145
p3 0.1665± 0.0149 0.1644± 0.0152 0.2447± 0.0069 0.2404± 0.0133
p4 0.1432± 0.0128 0.1386± 0.0131 0.2651± 0.0063 0.2506± 0.0121
p5 0.0948± 0.0115 0.1005± 0.0117 0.0895± 0.0057 0.1121± 0.0110
p6 0.1084± 0.0098 0.1058± 0.0100 0.2738± 0.0051 0.2593± 0.0098
p7 0.0953± 0.0090 0.0946± 0.0092 0.2476± 0.0045 0.2509± 0.0088
p8 0.0442± 0.0080 0.0482± 0.0082 0.0338± 0.0038 0.0397± 0.0075
p9 0.0246± 0.0072 0.0242± 0.0073 0.0000± 0.0056 0.0038± 0.0109

Table 3: Estimated probability density values and confidence intervals for true bi-gaussian distribution for
DEL(9) and SPL(9,200) with5% and10% absolute error

about the estimation procedure used to estimateθ0. In the results presented here, we can state that we are
95% confident that intervals constructed using the estimation procedures with DEL(M) and SPL(M,N)
would “cover” θ0. We note that for the fixed valueM = 9 the confidence intervals corresponding to
α = 0.05 when using DEL(M) are relatively small in relation to the estimatedθ̂ for data with both
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Figure 5: Estimates of probability densities with confidence intervals given a true bi-gaussian distribution
using a)DEL(9) with 5% absolute error, b)DEL(9) with 10% absolute error, c)SPL(9,200) with 5% absolute
error, d)SPL(9,200) with 10% absolute error
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5% and10% absolute error. Moreover, we note from Figure 5 that the resulting confidence intervals
for DEL(9) with 5% and10% absolute error are approximately the same. Thus, forM = 9, the delta
function approximation method appears to be insensitive to noisy data. In comparison, we note for this
fixed valueM = 9 when using SPL(M,N) the resulting confidence intervals are relatively larger for data
with 10% absolute error in comparison to those for data with5% absolute error. Thus, the confidence
associated with the estimator procedure based on SPL(M,N) appears to decrease as the percentage of
absolute error increases. However, the confidence intervals are still relatively small in relation to the
estimateŝθ. Based on these results, we would infer that for this fixed value of M, the spline based
approximation method appears to be very slightly sensitive to very noisy data.
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Figure 6: Estimates of probability densities with confidence intervals given a true bi-gaussian distribution
using a)DEL(15) with 5% absolute error, b)DEL(15) with 10% absolute error, c)SPL(15,200) with 5%
absolute error, d)SPL(15,200) with 10% absolute error

We note that the estimated probability density values and corresponding confidence intervals for
DEL(15) and SPL(15,200) in the presence of5% and 10% absolute error are given in Table 4. In
Figure 6, we see the confidence intervals corresponding to the estimated growth rate distributions with
α = 0.05 for DEL(15) and SPL(15,200) with simulated data with both5% and10% absolute error. The
endpoints of the confidence intervals are constructed in the same way as discussed above. We can again
state that we are95% confident that intervals constructed using the estimation procedures with DEL(M)
and SPL(M,N) would “cover”θ0. From Figure 6 we see that the confidence intervals corresponding to
α = 0.05 when using DEL(M) forM = 15 are relatively small in relation tôθ for data with5% and
10% absolute error much like those computed forM = 9. We also see in this case that the confidence
intervals are approximately the same for both sets of data. We arrive at the same conclusion forM = 15
as we did forM = 9; that is, the delta function approximation method appears to be insensitive to
noisy data. We now look at the results forM = 15 when using SPL(M,N) with data with5% and10%
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DEL(15) -5% DEL(15) -10% SPL(15,200) -5% SPL(15,200) -10%
p1 0.0788± 0.0141 0.0826± 0.0148 0.0335± 0.0192 0.0650± 0.0376
p2 0.0689± 0.0132 0.0714± 0.0138 0.0180± 0.0110 0.0197± 0.0241
p3 0.0771± 0.0123 0.0774± 0.0129 0.0823± 0.0104 0.0899± 0.0204
p4 0.0983± 0.0115 0.0896± 0.0121 0.1752± 0.0099 0.1632± 0.0193
p5 0.1123± 0.0107 0.1151± 0.0113 0.2735± 0.0093 0.2738± 0.0183
p6 0.1064± 0.0101 0.1053± 0.0105 0.2725± 0.0088 0.2531± 0.0173
p7 0.0768± 0.0091 0.0779± 0.0095 0.1805± 0.0083 0.1803± 0.0162
p8 0.0579± 0.0085 0.0642± 0.0089 0.1033± 0.0078 0.1374± 0.0153
p9 0.0748± 0.0082 0.0700± 0.0086 0.1854± 0.0073 0.1692± 0.0144
p10 0.0800± 0.0071 0.0798± 0.0074 0.2783± 0.0068 0.2685± 0.0134
p11 0.0765± 0.0063 0.0780± 0.0066 0.2783± 0.0062 0.2879± 0.0121
p12 0.0447± 0.0054 0.0446± 0.0056 0.1811± 0.0061 0.1712± 0.0119
p13 0.0230± 0.0045 0.0231± 0.0047 0.0663± 0.0053 0.0793± 0.0103
p14 0.0123± 0.0043 0.0091± 0.0045 0.0147± 0.0049 0.0022± 0.0096
p15 0.0121± 0.0053 0.0120± 0.0055 0.0025± 0.0078 0.0261± 0.0152

Table 4: Estimated probability density values and confidence intervals for true bi-gaussian distribution for
DEL(15) and SPL(15,200) with5% and10% absolute error

absolute error. We also see forM = 15 as we saw forM = 9 that the resulting confidence intervals
are larger when the data is noisier. As discussed in the case forM = 9, the spline based approximation
method also appears to be slightly sensitive to noisy data. To summarize, we note based on the standard
error analysis discussed in this section and computational results (those presented here as well as those
obtained forM = 5) we can conclude that DEL(M) appears to be insensitive to noisy data. Moreover, we
can state that we are confident about the estimated growth rate distributions obtained using this method.
We also conclude that SPL(M,N) appears to be relatively insensitive to noisy data. Furthermore, we
would feel certain about the estimated growth rate distributions obtained using SPL(M,N) with data
with small amounts of noise; however, we would infer that larger amounts of noise in the data would
lead to larger confidence intervals and less certainty in the associated estimated growth rate distributions
obtained using SPL(M,N).

4 Computational Results for Inverse Problems with Field Data

In this section, we will present and discuss the results of the inverse problem for the estimation of growth
rate distributions using the delta function approximation method, the spline based approximation method,
and a parameterized ordinary least squares method. We use field data collected from rice paddies in the
place of the simulated data. Since the actual growth rate distribution of the mosquitofish observed in the
experiment is unknown, we must compare the field data to the estimated population data produced by
the estimated growth rate distribution from each of these methods in order to compare the efficacy of
these methods.

In these numerical simulations, we assume that the growth rate of the mosquitofish is now para-
meterized by both the intrinsic growth rateb and the maximum sizeγ, whereg(x) = b(γ − x). The
collection of growth rates for the DEL method is now given byG = {gjk}, for j = 1, . . . , M1, and
k = 1, . . . , M2, wheregjk = bj(γk − x) with {bj} and{γk} the discretizations ofB andΓ, respec-
tively. As earlier stated, in the GRD model mosquitofish are grouped together in the same subpopulation
if they have the same growth rategjk. We assume here, as we also assumed in our earlier computations,
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thatµ = 0 andK = 0, so that we can focus on the growth rate distribution only (mortality and fecundity
were not thought to be important features of the experimental data of [4, 10]).

The field data that we are using in the inverse problem was collected in an experiment described
in [10]. On June 28, 1992, four rice paddies were stocked with mosquitofish. In order to measure
emigration, an outflow trap was placed on each paddy. Fifteen traps were used per paddy, and weekly
measurements were taken. The length of the mosquitofish range from 0 to 40 mm, with the mosquitofish
being grouped into size classes of 2 mm for a total of 20 size classes. The data for Day 195, Day 202,
Day 209, and Day 216 are used in these simulations (see Figure 7). We define the size distribution
frequency for size classi asfi = nm,i/Nm, wherenm,i is the number of mosquitofish measured in size
classi andNm is the total number of mosquitofish measured. The total population of mosquitofish is
divided into 512 subpopulations. We note that the discretizations for the intrinsic growth ratesb and the
maximum sizesγ are defined as

bj = 0.2 +
1
31
· 4.8 · (j − 1), j = 1, 2, . . . , 32

γ1 =
16
38

, γ2 =
22
38

, γ3 =
24
38

γk =
16
38

+
1
15
· 22
38
· (k − 1), k = 4, . . . , 16.

The Day 195 data is interpolated and used an approximation for the initial size densityΦ(x). Since this
data set is used as an approximation forΦ(x), it cannot be used in the estimation of the growth rate
distributions. Therefore, we are left with only three data sets to use in the inverse problem.

We introduced the delta function approximation method, DEL(M), earlier when the growth rate is
parameterized byb only. Since we are now considering a growth rate parameterized byb andγ, the
approximated population density foru(t, x; P ) in (2) is now given by

u(t, x; {pjk}) =
∑

j,k

v(t, x; gjk)pjk,

wherev(t, x; gjk) is the subpopulation density from (1) with growth rategjk andpjk is the corresponding
probability that an individual has growth rategjk. We will now use the notation DEL(M1,M2) to denote
the delta function approximation method, whereM1 is the number of intrinsic ratesbj andM2 is the
number of maximum sizesγk used in the approximation.

The spline based approximation method, SPL(M,N), was also introduced earlier for the one para-
meter family of growth rates. For the two parameter family of growth rates that we are now using, the
approximated population density foru(t, x; P ) in (2) is given by

u(t, x; {ajk}) =
∑

j,k

ajk

∫

B

∫

Γ

v(t, x; g)lj(b)lk(γ)dγdb,

whereg = g(x; b, γ) = b(γ−x) andpjk(b, γ) = ajklj(b)lk(γ) is the probability density for individuals
in population subgroupjk with lj , lk piecewise linear spline functions. The notation that we employ
here is SPL(M1, N1,M2, N2), whereM1 andM2 are the number of basis elements used to approximate
the growth rate probability distribution with respect tob andγ, andN1 andN2 represent the number
of quadrature nodes used in the composite trapezoidal rule [16] for double integrals to approximate the
integral in the expression above with respect tob andγ.

We next present the results of the approximation methods DEL(M1,M2) and SPL(M1, N1, M2, N2),
which we used in the inverse problem for the estimation of the growth rate distribution for the field data.
The addition of a second parameter in the growth rateg of the mosquitofish does not change the fact that
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the least squares inverse problem that we want to solve

min
P∈PM1×M2 (G)

J(P ) =
∑

i,j

|u(ti, xj ; P )− û(ti, xj)|2

=
∑

i,j

(u(ti, xj ; P ))2 − 2u(ti, xj ;P )û(ti, xj) + (û(ti, xj))2,

whereû(t, x) is the data andPM1×M2(G) is the finite dimensional approximation toP(G), simplifies
to a quadratic programming problem for an appropriately definedF (p) ≡ pT Ap + 2pT b + c.

In Figure 7, we have the results from the inverse problem using DEL(32,16). These results were
obtained in 514.3600 seconds, and the corresponding residualJ = 8.3169 × 10−4. We see from the
results shown in Figure 7 that the estimated population is a good fit to the field data. The two key
features of the data, dispersion and bifurcation, are both exhibited in the estimated population. The
corresponding estimated probability density and distribution are shown in Figure 8. While no useful
information can be obtained from Figure 8a, the estimated probability distribution in Figure 8b appears
to be Bi-Gaussian in bothb andγ, which is expected based on results from [9] and [10].
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Figure 7: Field data versus estimated population for DEL(32,16)

The best results obtained using SPL(M1, N1,M2, N2) for the estimation of the growth rate dis-
tribution of the field data are shown in Figure 9 for SPL(5,35,9,35). We note that the results ob-
tained using SPL(5,35,5,35) and SPL(5,35,7,35) were approximately the same as those obtained us-
ing SPL(5,35,9,35) for Day 202 and Day 209. However, the estimated population data obtained us-
ing SPL(5,35,9,35) gave a much better fit to the data for Day 216 than the results obtained using
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Figure 8: a) Estimated probability density and b) estimated probability distribution for DEL(32,16)

SPL(5,35,5,35) and SPL(5,35,7,35). The corresponding residual,J , for SPL(5,35,9,35) is 0.0054, and
these results were obtained in1.8822 × 103 seconds, or approximately 32 minutes. In comparison to
the estimated population data produced by the estimated growth rate distribution from DEL(32,16), the
estimated population data produced by the estimated growth rate distribution from SPL(5,35,9,35) does
not give as good a fit to the field data, as is seen in Figure 9. The estimated probability density and
distribution are shown in Figure 10. The resulting estimated probability distribution appears to be Bi-
Gaussian inγ. In contrast to the results obtained in the previous examples with simulated data, the delta
function approximation method does a better job of fitting the given field data in a more efficient way in
comparison to the spline based approximation method.

Since the results from SPL(M1, N1,M2, N2) were not as good as those obtained from DEL(M1,M2),
we tried one more method in the inverse problem with the field data. Based on previous work in [9] and
[10] and our own numerical simulations with simulated data, we know that a Bi-Gaussian growth rate
distribution results in population density data with the two key features of dispersion and bifurcation. The
field data that we are using in these computations exhibit these features as well, so we suspect that the un-
derlying growth rate distribution is Bi-Gaussian. With that in mind, instead of approximating the density
with delta functions or piecewise linear splines, we chose to use a parametric Bi-Gaussian probability
density function in the growth rate distribution (GRD) model. The estimated{pjk} and{ajk} found
via the DEL(M1,M2) and SPL(M1, N1,M2, N2) methods, respectively, were not readily interpreted in
terms of the actual mosquitofish growth rate and maximum size means and variances. However, by us-
ing an a priori Bi-Gaussian probability density function in the GRD model, we have in essence taken
a standard parametric approach to the statistical inverse problem. The Bi-Gaussian probability density
functionp we choose is given by

p(b, γ; b̄1, σ
2
b1 , b̄2, σ

2
b2 , γ̄1, σ

2
γ1

, γ̄2, σ
2
γ2

) =




exp

{
−−(b−b̄1)

2

2σ2
b1

}

2
√

2πσ2
b1

+
exp

{
−−(b−b̄2)

2

2σ2
b2

}

2
√

2πσ2
b2




×



exp
{
−−(γ−γ̄1)

2

2σ2
γ1

}

2
√

2πσ2
γ1

+
exp

{
−−(γ−γ̄2)

2

2σ2
γ2

}

2
√

2πσ2
γ2




where we have assumedb and γ to be independent Bi-Gaussian random variables. The parameters
(b̄1, b̄2) and(σ2

b1
, σ2

b2
) represent the means and variances, respectively, of a Bi-Gaussian distribution on

the intrinsic ratesb, while the parameters(γ̄1, γ̄2) and(σ2
γ1

, σ2
γ2

) represent the means and variances of a
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Figure 9: Field data versus estimated population for SPL(5,35,9,35)

0.4

0.5

0.6

0.7

0.8

0.9

1

0

1

2

3

4

5
−0.5

0

0.5

1

γb

P
ro

ba
bi

lit
y 

D
en

si
ty

 p
(b

,γ)

0.4

0.5

0.6

0.7

0.8

0.9

1

0

1

2

3

4

5
0

0.2

0.4

0.6

0.8

1

γ
b

P
ro

ba
bi

lit
y 

D
is

tr
ib

ut
io

n 
P

(b
,γ)

Figure 10: a) Estimated probability density and b) estimated probability distribution for SPL(5,35,9,35)

Bi-Gaussian distribution on the maximum sizesγ. We will defineq =
(
b̄1, σ

2
b1

, b̄2, σ
2
b2

, γ̄1, σ
2
γ1

, γ̄2, σ
2
γ2

)
.

Our third approach will not use an approximation to the GRD model, but instead use the Bi-Gaussian
probability density function, given above, in the GRD model

u(t, x; q) =
∫

B

∫

Γ

v(t, x; g(b, γ))p(b, γ; q)dγdb,
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where againg(x; b, γ) = b(γ − x). We will denote this third approach as PAR(M, N1, N2), whereM is
the number of parameters inq andN1 andN2 represent the number of quadratures used in the composite
trapezoidal rule [16] to approximate the double integral with respect tob andγ, respectively. We will
estimateq by solving the ordinary least squares problem

min
q∈RM

J(q) =
∑

i,j

|u(ti, xj ; q)− û(ti, xj)|2,

whereû(t, x) is the data. Once this least squares problem has been solved, we can use the optimalq in
the Bi-Gaussian probability density function to determine the population densityu(t, x; q).

The optimal results for the inverse problem using PAR(8,35,35) are shown in Figure 11. The optimal
parametersq = (1.9749, 0.0388× 10−3, 3.9132, 0.2228× 10−3, 0.5265, 0.7208, 0.0122, 0.0372), with
a residualJ = 0.0074, were determined in 20.5490 seconds. In comparison to the results obtained using
DEL(32,16) and SPL(5,35,9,35), the estimated population density does not fit the field data as well as
the estimated population density produced by DEL(32,16) but is comparable to those obtained using
SPL(5,35,9,35). We note that the spline based approximation method does a better job of estimating
the frequencies for the smaller size classes than the parameterized OLS technique. While the results
from the spline based approximation method and the parameterized OLS method are very similar, the
computational time required by PAR(8,35,35) is much lower (compare the 32 minutes for SPL(5,35,9,35)
versus 21 seconds for PAR(8,35,35)) than the computational time required by SPL(5,35,9,35). The
estimated probability density and probability distribution generated by the optimalq are shown in Figure
12. We clearly see for a fixed value ofγ the probability distribution ofb is Bi-Gaussian.

As we did previously, we would like to also present here some results on the uncertainty associated
with the estimated growth distributions determined by the inverse problem. The treatment in this section
with the field data is very similar to the treatment previously carried out with the simulated data. With
respect to the optimal results given in this section, we will only be able to perform a statistical analysis
for SPL(5,35,9,35) and PAR(8,35,35). We are unable to perform this analysis for DEL(32,16) because
the field data consists of 60 data points and the number of parameters determined by the DEL(32,16) is
512; thus, the analysis in this case is invalid. Since we have explained in detail the underlying statis-
tical model that we are considering, we will omit these details here and define functions and variables
that are used with respect to SPL(M1, N1,M2, N2) and PAR(M,N1, N2). First, we note that{x̄i}n

i=1

corresponds to(tl, xm), l = 1, . . . , 3,m = 1, . . . , 20 pairs since the field data that we use in the inverse
problem consists of three days and twenty size classes (hencen = 60), θ = {ajk}M1×M2

j,k=1 when using
SPL(M1, N1,M2, N2), andθ = q when using PAR(M, N1, N2). We also note that

f(x̄i, θ) =
M1∑

j=1

M2∑

k=1

ajk

∫

B

∫

Γ

v(x̄i; g)lj(b)lk(γ)dγdb,

whereθ = {ajk} when considering SPL(M1, N1,M2, N2). When considering PAR(M, N1, N2),

f(x̄i, θ) =
∫

B

∫

Γ

v(x̄i; g)p(b, γ; q)dγdb.

We will defineM from our previous analysis to beM1 ·M2 for SPL(M1, N1,M2, N2) andM (the num-
ber of parameters inq) for PAR(M,N1, N2). For SPL(M1, N1,M2, N2), the entries in the sensitivity
matrixX (θ) are given by

Xim(θ) =
∂f(x̄i, θ)

∂θm
=

∫

B

∫

Γ

v(x̄i; g)lj(b)lk(γ)dγdb.

For the parameterized OLS method, the entries in the sensitivity matrixX (θ) are given by

Xim(θ) =
∂f(x̄i, θ)

∂θm
=

∫

B

∫

Γ

v(x̄i; g)
∂p(b, γ; θ)

∂θm
dγdb,
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Figure 11: Field data versus estimated population for PAR(8,35,35)
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Figure 12: a) Estimated probability density and b) estimated probability distribution for PAR(8,35,35)

and we are able to analytically compute∂p(b,γ;θ)
∂θm

,m = 1, . . . ,M. Using these facts, we are able to
estimate the covariance matrixΣ, which we use to determine the standard errors and confidence intervals
for the θ̂. As we stated before, the endpoints of the confidence intervals are given by

θ̂ ± t1−α/2SE(θ̂),
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wheret1−α/2 is a distribution value given in the t-distribution statistical table (determined by the level
of significance chosen [24]). As before, we also chose to use a significance level of95% corresponding
to α = 0.05. From the statistical table for the t-distribution,α = 0.05 corresponds to 1.96 when the
number of degrees of freedom is large, i.e.n ≥ 30 which is true in this case.

For SPL(5,35,9,35), the optimal value forajk and the corresponding confidence interval are given
in Table 5. As clearly seen by the values given in this table, the confidence intervals are very large
in comparison to the value of̂θ. Based on these confidence intervals, we are not very confident about
estimated growth rate distributions obtained using SPL(5,35,9,35) in the inverse problem with this field
data. Moreover, we found that as the quantityM1×M2 became larger (while still remaining smaller than
n),X T (θ̂)X (θ̂) became nearly singular, resulting in a very ill-conditioned covariance matrixΣ. This, in
turn, resulted in larger confidence intervals, which implied that the estimated growth rate distributions
produced by the spline based approximation method were even more unreliable with respect to the field
data. Furthermore, we were unable to compute confidence intervals for the(M1,M2) pairs (5,11) and
(11,5) because the covariance matrixΣ did not exist in these cases (X T (θ̂)X (θ̂) was singular to machine
accuracy).

θ̂ ± t1−α/2SE(θ̂) θ̂ ± t1−α/2SE(θ̂) θ̂ ± t1−α/2SE(θ̂)
α11 1.0000± 0.4245× 105 α12 1.0000± 0.6404× 105 α13 0.0000± 0.7277× 105

α14 0.0000± 1.0735× 105 α15 0.0000± 3.1710× 105 α16 0.0000± 7.1776× 105

α17 0.0000± 8.7419× 105 α18 0.0000± 3.0799× 105 α19 0.0000± 0.2847× 105

α21 1.0000± 0.2878× 105 α22 0.1525± 0.3884× 105 α23 0.7181± 0.0999× 105

α24 0.0000± 0.4497× 105 α25 0.0620± 0.1099× 105 α26 1.0000± 0.5300× 105

α27 1.0000± 0.1159× 105 α28 1.0000± 0.1826× 105 α29 0.0000± 0.0721× 105

α31 0.0000± 0.1106× 105 α32 1.0000± 0.5037× 105 α33 1.0000± 0.4524× 105

α34 0.8275± 0.2581× 105 α35 0.0000± 0.0555× 105 α36 0.6864± 0.1384× 105

α37 0.0000± 0.1537× 105 α38 0.1591± 0.0115× 105 α39 0.0000± 0.0340× 105

α41 0.0000± 0.3470× 105 α42 0.9352± 0.2464× 105 α43 1.0000± 0.3213× 105

α44 0.6130± 0.2102× 105 α45 0.0000± 0.0946× 105 α46 0.0000± 0.0683× 105

α47 0.4924± 0.0181× 105 α48 0.2598± 0.0278× 105 α49 0.0000± 0.0011× 105

α51 0.5786± 0.7387× 105 α52 0.0000± 0.1237× 105 α53 0.0000± 0.1336× 105

α54 0.0000± 0.2196× 105 α55 0.0000± 0.1207× 105 α56 0.0000± 0.1020× 105

α57 0.0000± 0.0372× 105 α58 0.0000± 0.0172× 105 α59 0.1682± 0.0005× 105

Table 5: Estimated valuesajk and confidence intervals for SPL(5,35,9,35) with field data

In Table 6, the optimal parameter values forq with the corresponding confidence intervals are given
for PAR(8,35,35). We see that the confidence intervals computed with respect tob̄1, σ

2
b1

, b̄2, σ
2
b2

, i.e.
those associated with the individual growth rateb, are relatively large in comparison to the optimal
value obtained from this method for these parameters. Therefore, we can not be very certain when
reporting values for these particular parameters when using PAR(8,35,35). However, we see that the
confidence intervals obtained forγ̄1, σ

2
γ1

, γ̄2, σ
2
γ2

, i.e., those associated with the maximum sizeγ, are
very small in comparison to the optimal values obtained using this method. Based on this analysis,
we feel more certain about the estimates obtained for these parameters because of the much smaller
confidence intervals associated with these parameters.

Overall, we found that the estimated growth rate distributions obtained using DEL(32,16) produced
the best fit to the field data in comparison to both SPL(5,35,9,35) and PAR(8,35,35). We also found the
results produced by PAR(8,35,35) were very much comparable to those obtained using SPL(5,35,9,35)
in a more efficient manner in terms of computational time. From the sensitivity analysis done on the
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Parameter θ̂ ± t1−α/2SE(θ̂)
b̄1 1.9749± 395.3664
σ2

b1
0.0388× 10−3 ± 3.1450

b̄2 3.9132± 139.7600
σ2

b2
0.2228× 10−3 ± 1.5226

γ̄1 0.5265± 0.8471× 10−4

σ2
γ1

0.0122± 0.2982× 10−4

γ̄2 0.7208± 0.1426× 10−3

σ2
γ2

0.0372± 0.8201× 10−4

Table 6: Estimated parameters for Bi-Gaussianp(b, γ) and confidence intervals for PAR(8,35,35) with field
data

estimates obtained from SPL(5,35,9,35) and PAR(8,35,35), we observed that for this inverse problem
the estimates from the spline based approximation method are not very reliable (based on the resulting
large confidence intervals). We are more certain about the parameters related toγ when using the pa-
rameterized OLS than the parameters related tob. Overall, based on the fit-to-data and computational
time, the delta function approximation provides the best estimates of the growth rate distribution for the
field data in this example.

5 Concluding Remarks

In this paper we have presented computational and statistical comparisons of two “finite-element” type
approximation schemes for estimation of probability distributions arising in problems with aggregate or
population level observations. One approximation scheme, DEL, is at the level of the distribution being
sought, while the other is at the level of the density (tacitly assumed to exist in the underlying theory
[12]) associated with the distribution. Strengths and weaknesses are illustrated in several computational
examples with simulated data in the context of functional growth rate estimation in size-structured pop-
ulation models. Finally, the most recently developed scheme, SPL, is used with experimental data for
mosquitofish populations and compared to earlier findings with the DEL scheme. While the results here
are specific to size-structured population models, the ideas are widely applicable to other areas of appli-
cations in biology as well as in viscoelastic materials and in electromagnetic interrogation of dielectric
materials.
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